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Abstract-A new analytical procedure called interzone temperature profile estimation (ITPE) is presented 
and applied to determine the two-dimensional steady-state temperature distribution within earth around 
a building. The solutions of the governing heat conduction equations are derived for two common 
ground-coupling geometries : slab-on-grade floors and rectangular basements. A water table at constant 
temperature is assumed to exist at a given depth below the soil surface. The solutions presented are the 
first analytic solutions for these geometries capable of considering the effects of both insulation and the 

presence of a water table on heat flow from these geometries. 

1. INTRODUCTION 

WHEN A steady-state heat conduction problem is too 
complicated to be solved by analytical techniques, 
graphical means, electrical analogies or numerical 

techniques are normally utilized. However, in most 
cases numerical techniques such as finite differencing 
provide numerical answers to a specific problem with- 
out much physical insight. 

This paper presents a new procedure for solving a 
class of complicated heat conduction problems. This 
procedure combines numerical and analytical tech- 
niques to arrive at the functional form of heat con- 
duction solutions that otherwise cannot be obtained 
by solely applying the classical analytical methods. 
The new procedure, called interzone temperature pro- 
file estimation (ITPE), allows an understanding of the 
heat flux mechanism within and at the boundaries of 
a conducting medium. 

When first introduced in ref. [l], the ITPE technique 
used an approximate estimation of the temperature 
profiles along surfaces that divide the conducting 
medium into zones where the heat conduction equa- 
tion can be easily solved. Two applications of the 
ITPE technique to ground-coupled heat transfer were 
treated, the insulated slab-on-grade problem in ref. 
[2] and the insulated full-rectangular-basement prob- 
lem in ref. [3]. In this paper, the ITPE technique is 
improved by introducing a method that leads to a 
very good estimation of the temperature profiles, and 
consequently to more accurate solutions of the heat 
conduction equation. 

The idea of the ITPE technique consists of assuming 
that the temperature variation along adequate sur- 

faces inside the ground (or any other medium) is 
known. These surfaces are those imposed by either of 
the following cases. 

(1) Geometric configuration, such as a rectangular 
basement shape. 

(2) Boundary condition, such as an insulated slab- 
on-grade floor adjacent to a soil surface kept at a 
constant temperature. 

Instead of the approximate exponential form for 

the temperature profile expressions used in the pre- 
liminary work [2, 31 an ‘exact’ form is determined by 
imposing heat flux continuity along the surface where 
one of the two cases cited above occurs. As will be 
shown later in this paper, these ‘exact’ forms are, in 
most cases, obtained through the use of the Gauss- 
Jordan elimination method. 

Due to the mathematical complexity, analytical 
solutions for basement configurations are extremely 
limited. Shelton [4] determined the steady-state heat 
loss from a hemisphere embedded in the ground. 
Boileau and Latta [5] developed a steady-state solu- 
tion for basements based on the assumption that heat 

flows follow circular arcs. Their solution is the 
basis for the method which has been provided in the 
ASHRAE Handbook [6] for over a decade for cal- 
culating maximum losses at design conditions. Other 
analytical solutions are those developed by Shen and 
Ramsey [7] and Claesson and Eftring [8]. Shen and 
Ramsey [7] used the least square Fourier series 
method to estimate heat losses from insulated under- 
ground buildings, but they did not account for water 
table effects. Claesson and Eftring [8] computed the 
steady-state optimal thermal insulation distribution 
for several underground configurations. However, the 
heat losses for insulation other than optimal are not 
given. Most of the analytical solutions and design 
methods for basement and slab-on-grade heat loss are 
reviewed in ref. [9]. 

This paper analyzes the two most common ground- 
coupled structures: slabs and basements. The prime 
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NOMENCLATURE 

u half width of ground-coupled building T, water table temperature [K] 

[ml T, slab temperature [K] 
A,,, I$,, C, general term in a Fourier series T, soil surface temperature [K] 

expansion A;r, dimensionless temperature 
b water table depth [m] u0 envelope material conductance 

L 

basement depth [m] [Wm-‘K-‘1 
functions of one of the space coordinates IJi insulation conductance wrn-‘K-‘I. 

Kl 
f., g, Fourier coefficients 
H ratio, h/k, [m-‘1 Greek symbols 
h overall heat transfer conductance a, /?, y coefficients defined in equations (6) 

[Wrn-‘K-‘] and (16) 

hi inside surface convective heat transfer a’, ,B’, y’ coefficients defined in equation (18) 
coefficient wm-2K-‘] i,, xn, v,, p, eigenvalues [m-‘1. 

h, outside surface convective heat transfer 
coefficient [Wm--2 K-l] 

ks soil thermal conductivity [W m-’ K-‘1 Subscripts 
L distance from building center to a f floor 

boundary where soil temperature is wl walls 
undisturbed [m] I zone (I) 

T temperature [K] II zone (II) 

T, building air temperature [K] III zone (III). 

objective of this study is to determine the effects of 
thermal insulation and the water table on the steady- 
state soil temperature distribution. Note that this 
analysis can be used to determine the yearly average 
heat losses from basements and slabs. 

The second section discusses the two-dimensional 
steady-state heat conduction solution underneath a 
slab-on-grade floor. The special case of a non-insulated 
slab is analyzed in some detail. The effect of the depth 
and the temperature of a water table beiow the slab 
floor is determined and conclusions are drawn. 

The temperature distribution around an insulated 
rectangular basement is the subject of the third 
section. While the insulation along the walls and the 
floor is assumed uniform, the insulation of the walls 
can be different from the insulation of the floor. The 
effect of a water table, at some depth below the base- 
ment floor, is also shown. 

2. INSULATED SLAB-ON-GRADE FLOOR 

2.1. General solution 
Even when a slab floor is not insulated, the tem- 

perature along its width is not constant. A thermal 
resistance exists between room air and the slab 
surface. To account for this resistance, an interface 
conductance h is usually introduced and a third-kind 
boundary condition is used. This boundary condition 
expresses the continuity of the heat flux between the 
lower slab surface and the interior air (at q) via 
(1) the convective conductance h, to the ambient air 

above the slab, (2) the insulation conductance Ui, (3) 
the slab material conductance U,, and (4) the interface 
contact conductance hi. Therefore, the boundary con- 
dition at the slab surface can be written as 

kss .“=(I 

= hf T(X, 0) - Ti] 

where h is the equivalent air-insulation-slab-soil con- 
ductance, given by 

h= (h~‘+U~‘+U~‘+h~‘~-’ (1) 

and k, the thermal conductivity of the soil (assumed 
isotropic), while T, is the air temperature above the 
slab (i.e. the building interior temperature). 

Consequently, the steady-state temperature dis- 
tribution T(x, y) inside the ground for an insulated 
slab-on-grade floor configuration as shown in Fig. 1 
can be determined by solving the following equation : 

d2T a=T 
-0 ax* +v- 

with 
T= T, forY=b 

T= T, forY=Oand]x] >a 

z=H(T--T,) forY=Oand]x]<a 
8Y 

where f-I is the ratio of the equivalent air-insuiation- 
slab-soil conductance to the soil thermal conductivity 
(i.e. H = h/k,). 

The equation above cannot be solved by formal 



The ITPE technique applied to steady-state ground-coupling problems 1887 

T 

Zone I 

TW 

-a o Tt a T( 

i H 
>x 

! 

! 
i 

zone 11 
t 

Zone I 

I b 

FIG. 1. Slab-on-grade floor configuration with finite water table level. 

techniques such as the Schwarz-Christoffel trans- 
formation used in ref. [lo]. However, the ITPE 
approach can be used. Figure 1 shows that the 
surfaces, x = ---a and a divide the ground medium 
into three zones. 

Because of the symmetry around the axis x = 0, the 
temperature T&y) will be determined only in zones 
(I) and (II). Let f(y) be the temperature profile along 
the surface x = -a; then the solution of equation (2) 
in zone (I) is 

2 m sinv,y 
T,(X,Y) = 5 c __ 

n--l VII 

x{[T,-(-l)“TW][l-eY~(“+u)]+v,f,ev~(X+u~} (3) 

while in zone (II), the temperature T,,(x, y) is given 

by 

where 

or 

-2 m 
=- 1 v, tanh v,u fn sin v, y 

b n=, 

The Fourier coefficients fn are obtained through use 
of the Fourier inverse integrals by multiplying the 
above equality by sinv,y (p = 1,2,. . .), and inte- 
grating the resultant equation over [O, b] which yields 

vJ,-[T~-(-~)~T,] =-v&tanhv,a 

-(-l)pTW tanh v,a+ iat, cn&. 
P” +% 

After rearrangement, this expression can be put in the 
form 

where 

v,, =y; f. = O’f(y)sinv,ydy; pn =v 
s 

and 

C" = 

HI:/~,+T~lsinh~,,b + f ,f fmp,v,,,/@.'+~,Z) 
m--l 

W+~,coth~,b) 

The continuity of the heat flux at the surface 
x = -a, gives the condition 

(5) 

-( - l)pTW tanh \>‘pa 

2 9 (HT,+p,T,Jsinh p,b)v, 

+ ii ? “-I (H+p n coth fi b)(p’+v*) n n P 

and 

/jms = 4vm 
ab( I + tanh vpa) 

In the general case (i.e. H # CO), the system of equa- 
tion (6) can be solved for the fP's only numerically. 
To do so the sum in equation (6) is first truncated to 
a finite number of terms, N. By varying the value of 
p from 1 to N in equation (6) a linear system of 
N equations with N unknowns (the coefficients f,, 
p= 1,2,..., N) is obtained. This system can be solved 
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using the Gauss-Jordan elimination method. Once 
the coefficients fb are found, they are substituted in 
equations (3) and (4) (in which the sums are also 
truncated to N terms) to obtain the temperature dis- 
tributions Ti(x, y) and T,,(x, y), respectively. For the 
case of the slab-on-grade problem, it was found that 
N = 15 gives accurate estimations. Addition of other 
terms does not alter the results for T, and TII sig- 
nificantly (less than O.Ol”C variation in soil tem- 
perature, for the cases treated in this paper). 

Before proceeding further with the insulated slab- 
on-grade floor results, let us consider the limiting case 
of the non-insulated slab and perfect soil-slab contact 
(i.e. H = co). 

2.2. Prescribed slab-on-gradeJoor temperature 
When the slab is kept at a constant temperature T, 

the temperature distribution inside the ground can be 

obtained from the above analysis by letting H -+ CO. 
In particular, the Fourier coefficients f, can be deter- 

mined in closed form, since fimP = 0 for all the values 

of m. It is found that 

f, = 
T, + To tanh vpa (- 1)” T 

v,(l+tanhv,a) -7 w’ 
(7) 

Note the change in notation from T, to TO. This is 
done on purpose to stress the fact that for a perfectly 
uninsulated floor, the slab temperature is uniform and 
equal to T, = TO. For an insulated floor, T, does not 
represent the temperature of the slab surface. 

The substitution off, by its value and H by co, in 
equations (3) and (4) gives the temperatures in zones 
(I) and (II), respectively, as 

T,(x,y) = T, - ;(T, -T,) 

en(.y+a)lb sin ny/b 

1 - en(x+a)ib cos ny/b 1 
-tan-’ 

en(rmu)ib sin ny/b 

1 - en’-Y-a)ih cos ny/b II (To-T,) (8) 
and 

T,,(x,Y) = To -f&-T,) 

-tan’ 
e-n(o- r)/h sin ny/b 

] -e~“‘“-““bCOSZy/b II CT, - To 1. (9) 

Representative isotherms are shown for two cases 
in Fig. 2. In both cases, the half slab width a is equal 
to 3 m, while the water table depth is b = 5 m. Figure 
3 shows the temperature variation with depth y along 
vertical surfaces. 

A close look at Fig. 2 reveals that, in each of the 
two configurations, the isotherm T = 22°C meets per- 

pendicularly, one of the three bounding surfaces : the 
slab, the soil surface, or the water table (i.e. the surface 
that is kept at the temperature T = 22°C which is the 
medium of the three temperatures T,,, T,, and T,). 
The meeting point is what was called in ref. [lo] the 
double point. The fact that, at this point, an isotherm 
is perpendicular to the bounding surface indicates that 
there is no heat flux at this location of the surface. In 
addition, the slab-on-grade floor configuration pre- 
sents an axial symmetry around x = 0. Because of this 
symmetry it can be concluded from Fig. 2 that in most 
cases the surface which is kept at the medium of the 
three boundary surface temperatures T,,,, (i.e. 
T,, = med (T,, T,, T,)), has two double points. 
These two double points are symmetric to each other 
relative to the axis x = 0. Moreover, the two sym- 
metric isotherms T = Tmd divide the ground into two 
zones, a warm zone and a cold zone. In the first zone, 
the temperature is always above Tmd, and the heat 
flows in one direction : from the surface at the highest 
temperature to the surface at Tmd. Conversely, in the 
second zone. the temperature never exceeds Tmd, and 
the heat flow is always from the surface at Tmd to the 
surface at the lowest temperature. 

For example, consider the case of Fig. 2(a), in which 
the slab floor is kept at the medium temperature 
Tmd = T,, = 22°C. In this case the edge of the slab, 
part of the warm zone, gains heat from the soil surface 
(at 26°C). Meanwhile the center of the slab, losing 
heat to the water table surface (at lSC), belongs to 
the cold zone of the ground. 

Figure 4 shows the effect of the depth b on the heat 
flux distribution along the slab floor. The deeper the 
water table is, the narrower the central zone from 
which the slab loses heat. In other words, when b 
increases, the double points approach the center of 
the slab. This result agrees with Fig. 5 which shows 
the variation of the double point location as a function 
of water table depth b for different values of AT, 
(AT, = (TO-- T,)/(T, -T,), AT, > 0 implies the con- 
figuration T, < T, < T,). 

2.3. Insulated slab-on-grade poor results 
When the slab-soil contact is not thermally perfect 

or when the slab is insulated, the temperature along 
the floor surface is no longer constant. In fact, the 
insulation removes the temperature discontinuity at 
the floor edge, making the transition from the indoor 
temperature T, to the soil surface temperature T, rela- 
tively smooth compared to the sudden transition 
noted in the case of an uninsulated slab. This tran- 
sition becomes less abrupt as the insulation level 
increases. This fact is illustrated in Fig. 6 ; isotherms 
beneath a floor of half width a = 3 m. and above a 
water table of depth b = 5 m are shown. Different 
insulation configurations are presented. 

The configuration of Fig. 6(c) (H = 0.2 m-l) is 
particularly interesting. In this case all the isotherms 
are parallel to the soil surface, indicating a linear 
variation of the earth temperature with depth. This 
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b=6m 
b = 7.5 m 

Distance from the center. m 

FIG. 4. Effect of water table depth on heat flux distribution along an uninsulated slab-on-grade floor. 

particular result is general in a configuration where 
T, < T, < Ti. In fact, the temperature inside the 
ground depends linearly on the depth y, when the 
parameter His equal to a special value Ho given by 

H, = - ;(l+AT,). 

Note that AT, = (T,-T,.,)/(T,-T,) < - 1, in this 
case. The condition of equation (10) implies that the 
temperature along the slab surface is uniform and 
equal to the soil surface temperature T,. In the con- 
figuration of Fig. 6(c), AT, = -2, giving a value of 
Ho = 0.2 m-‘. In this case also note that the tem- 
perature of the slab is uniform and equal to T, = 22°C 
while the room air temperature is 26°C. 

From Fig. 6, one can see that the double point, 

which is initially beyond the slab edges, moves 
toward the slab edge, as the value of H decreases (e.g. 
as the result of an increase in the insulation). When 
H = Ho, the double point reaches the slab edge and 
stays there even after a further decrease in H. Equa- 
tion (10) shows that an increase in the water depth b 

results in a decrease of the value of H,, indicating that 
more insulation is needed to reach the case where heat 
is lost uniformly from the floor surface (case of Fig. 
6(c)). In the limiting case when b -+ 00 (i.e. no water 
table), only perfect insulation leads to a uniform heat 
loss (of zero) from the floor. 

In the case of Figs. 6(a) and (b), the floor loses heat 
to both the soil surface near the floor edges, and to 
the water surface from the central area. However, in 
the case of Figs. 6(c) and (d) a change in the heat flux 
pattern occurs. Here, the floor loses heat only to the 
water table. 

Figure 7 shows the heat flux distribution along the 
floor surface, for the same temperature configuration 
of Fig. 6 (i.e. 7’,,, = 18”C, T, = 22°C T, = 26°C). Two 
values of H are considered, 3.5 mP1 (Fig. 7(a)), and 
0.5 m-’ (Fig. 7(b)). As one could expect, the heat loss 
is approximately constant near the slab center, but 
increases rapidly near the edges. In both Figs. 7(a) 
and (b) the heat loss at any point of the slab increases 
as the water depth b decreases. This increase is more 
noticeable at the center of the floor, since at this 

1 

c 
0 3 I 6 

Water level depth, m 

FIG. 5. Double point location vs water table depth. 
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location, the heat loss is principally due to the presence 
of the water surface, which is at a lower temperature 
than the soil surface. Figure 8 gives the heat flux 
distribution along the floor surface, for a different 
temperature configuration (TW = 18°C T, = 26°C 
Ti = 22°C). It is known in this case that the double 
point is located beneath the floor. The intersection 
point between the zero heat flux line and the heat flux 
distribution curve, marks the double point location. 
Both Figs. 8(a) (H = 3.5 m-‘) and (b) (H = 0.5 
m-l), show clearly that the floor surface is divided 
into two zones, one near the edges, gaining heat from 
the soil surface, and a second near the center, losing 
heat to the water surface. The area of the latter zone 
tends to decrease as the water depth increases. 

3. INSULATED RECTANGULAR BASEMENT 

For the basement problem a model different from 
that used previously will be introduced. Above, the 
temperature distribution was obtained along an infi- 
nite width of the ground (i.e. from x = -co to co). 
The earth isotherms observed in the slab-edge and the 
slab-on-grade floor configurations indicated that the 
temperature varies linearly with depth, at locations 
far from the slab. For this reason, and especially for 
computational convenience, the basement problem is 
modelled as shown in Fig. 9. Along the bounding 
surfaces x = + L, the temperature is simply assumed 
to be a linear function of depth. In these conditions 
the temperature distribution T(x, y), around the rec- 
tangular basement, is the solution of the following 
equation : 

!E+E=o 
@’ (11) 

with 

--+~(T,--T) fory=cand/xl<a 

- $ = H&T- I;) fory<candIx/ =a 

T= T, fory=OandIxl>a 

-L Tj -a 0 

for 1x1 = L 

T=O fory = b 

where Hr = hr,/kS and SW, = h,, ,/k, ; hf and &, are the 
values, respectively, of the air-insulation-floor-soil 
conductance and of the air-insulation-walls-soil con- 
ductance. 

Note that in the formulation of equation (11) the 
water table temperature T, was set to zero. This 
assumption is not restrictive since, for steady-state 
problems, the origin of temperature is arbitrary. A 
legitimate choice of this origin is T,. 

In order to solve the Laplace equation {i.e. equation 
(11)) by the ITPE technique, the ground is divided 
into five zones as indicated in Fig. 9. Since the base- 
ment configuration has an axial symmetry around 
x = 0, the determination of the temperature variation 
in zones (I), (II), and (III) will be sui%ient. Fur- 
thermore, the temperature profiles at the surfaces 
x = -a and y = c are functions of y and X, respec- 
tively 

T(--a,~) = f(y)> c <Y < b 

and 
T(x, c) = g(x), -L<x< -a. 

Using the separation of variables technique, the 
solution in zone (I) is 

G(V) =&j,f”sinv&-4= 

5Z 
A, cos p,,x 

sinh p,(b -y) -- 
sinh/.@-c)’ 

In zone (III), the solution is given by 

(12) 

sinh~(~-y) 
cii(x,y) - (L2a)~~,g.sinX.(*+u)sinh;l,(b_c) -- 

8 L . r--------- tx 

(II) H, Ti ] 

--____*_-___*__*_-___ , Hr ---_---______*_____. 
iC t 

ib 

-- ----i_ - - 
-- -k- -_ 

Y 
FIG. 9. Rectangular basement con~guration with finite water table level. 
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The expression for the temperature in zone (II) 
takes a more complex form 

sinh~,,(c-y) 2 x---- - sinh xII y 

sinh x,c + (L-a),,, n 
5 g sinx 7 

n smh x,c 

+2r t Il-(-lY’(~-Wlsin~ ysinh5,(=ta) 

c ‘,=1 
-- 

L Cl %%-&2-L) 

sinh [,(x+ L) 
+ z g B, sin C, y 

rr-l smh <"(L--a) (14) 

where 

V, =&; 

re=F; p”J!.I;!?!! 

b 

fn = ft~)sinv,(~--c)d~ s c 

gn = g(x)sinx,(xfa)dx 

+2(-1)” a) r: fm%P”/(4+fi,2) 
(b-4 ,=rff,+~,cothI*,tb-4 

-11 -( - l~(~-c)~~]~,~sinh [,L(a- L) .___ 
H,, +&, cothi,(L--a) 

The Fourier coefficients fn and gn can be deter- 
mined from the required continuity of the heat flux 
along the surfaces x = -a and y = c. First, for 
x = -a, flux continuity states that 

After a computation procedure similar to that fol- 
lowed in the slab-on-grade section, the condition given 
by equation (15) leads to 

v,,[tanh v,,u+coth v&L--a)]f, = yP 

+ ? @,,pf, + : Bn,pgn (16) 
n=, fi= I 

with 

tb-c)T, -- 
+6sinhv,(L-a) 

The condition of the heat flux continuity at the 
surface y = c is expressed by 

ar,, ah 
-i 1 ay y=c = aY y=c’ (17) 

This condition yields a system of equations of the 
form of 

Qcoth SC+ coth xp(b - c)] gp = $, 

where 

7; = -[1-(-l)P] & + (1 -c/‘b)(- l)PT, 
P 

1 
x coth x&b-c) -I- ~ 

X,(b-c) 1 

[I-(- l)“lxpKv, 
-@, [H,,+[ n coth[ (L-a)](~~+[‘) n P n 

+ 2 T, f x&3 -(- 1YV -c,Wllsinh W-4 ~.... 
c n= I Ww, +i,cothi,(L-a)1(1,2+~~,2) 

m in[l-(-1>“ltc~th(i,(~--a))-~l~i,~L-~)l} 
+c n= I tH,,+i,cothi,(L-a)l(i,z+x,2) 

4 I amp = - ____ 
c(L--a) 

The procedure developed for determining the slab- 
on-grade solution can be repeated, with some appro- 
priate adjustments. To find the temperature dis- 
tribution around a rectangular basement for specific 
boundary tem~ratures, water depth, and insulation 
configuration, two steps are needed. 

(1) The Fourier coefficients f, and g, are deter- 
mined by truncating the sums in equation (16) and 
in equation (18) to N terms. By doing so, a system of 
2N equations with 2N unknowns (S,, f 2,. . . , fN and 
gi, g2,. . . , gN) is obtained. This system can be easily 
solved using standard methods (e.g. Gauss-Jordan 
elimination). In all basement configurations treated 
in this seqtion, N = 20 was needed to reach an accu- 
racy of O.Ol”C for the soil temperature. 
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FIG. 10. Earth temperature isotherms around a basement with water table depth b = 4 m, T, = 22”C, 
T, = 26”C, T, = 18”C, Hf = co : (a) H,, = cc ; (b) Hw, = 0.5 m-‘; (c) H,, = 0 mm’. 
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FIG. Il. Earth temperature isotherms around a basement with water table depth b = 4 m, Ti = 26”C, 
T, = 22”C, T, = 18”C, Hf = co : (a) H,, = 00 ; (b) H,, = 0.5 m-’ ; (c) H,, = 0 m-‘. 
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(2) The temperatures inside zones (I), (II), and 
(III) are found by substitution of the values of the 
Fourier coefficients f, and .4p into equations (12)- 
(14), respectively. 

Figure 10 illustrates the results of these two steps 
for a basement of half width a = 3 m, and a-depth 
c = 2 m. The air inside the basement is at a tem- 
perature T = 22°C while the soil surface temperature 
T, = 26°C. A water table below the basement Boor at 
a depth b = 4 m, is kept at T, = 18°C. Three wall 
insulation configurations are treated H,,,, = co in Fig. 
10(a), IY,, = 0.5 m-’ in Fig. 10(b), and H,, = 0 in Fig. 
10(c). In all these configurations, the basement floor 
is assumed to be perfectly uninsulated (i.e. Ht = co). 
At the point of connection between the soil surface 
and the basement wall, many isotherms meet (Fig. 
IO(a)). This indicates that, at this point, the heat flux 
is relatively large. However, when H,,,, decreases, the 
isotherms separate and the heat flux decreases (Figs. 
IO(b) and (c)). At the same time, the double point, 
initially located near the center of the wall surface, 
starts to move to the bottom of the wall. Again, it can 
be seen that this double point divides the wall into 
two regions. The upper part receives heat from the 
soil surface while the lower part loses heat to the water 
surface. Therefore, as H,, decreases (by increasing 
insulation), the wall benefits more from the soil sur- 
face than the water surface from the wall, at least as 
far as heat exchange is concerned. 

Moreover, and always referring to Fig. 10, it is clear 
that when the wall is perfectly insulated (H,, = 0), the 
ground temperature becomes a simple linear function 
of the depth y. In general, this situation occurs in the 
case where - 1 < AT,, = (TL - T,)/(T, - Ti) < 0 (e.g. 
T, < T, < T,), with the conditions : H,, = 0, Hr = co, 
and 

c = b(1 +AT,)-‘. (1% 

In the case of Fig. IO(c), since AT, = 1,b = 4 m, and 
c = 2 m, the condition of equation (19) is indeed met 
and the profile with depth is linear. 

Figure 11 shows some ground isotherms around a 
rectangular basement, similar to that in Fig. 10, but 
with T, = 22”C, T, = 26”C, and T, = 18°C. The dou- 
ble point on the soil surface first moves along the 
basement wall toward the basement floor as the wall 
insulation increases (i.e. Z&i decreases). This means 
that the soil surface receives progressively less heat 
from the basement wall. However, the area of the 
basement wall, from which this heat is lost to the soil 
surface, becomes larger. In fact, the dashed line in Fig. 
11 marks a limiting heat flow line. Above this line, 
heat flows solely towards the soil surface. In the case 
of Fig. 11 (c), this line coincides with the wall surface, 
since heat cannot be lost (perfect wall insulation, 
H,, = 0). 

4. CONCLUSIONS 

A semi-analytical procedure has been developed to 
solve some complicated heat conduction problems. 

This procedure has been used to carry out a detailed 
investigation of heat transfer from the ground to 
adjacent buildings with slab floors and basements. 
The importance of envelope insulation, water table 
temperature and geometric dimensions on the heat 
flow mechanism within soil is evaluated. Examination 
of soil temperature profiles in the two earth-contact 
structures treated in this paper shows that heat near 
the center of floors flows mostly in one dimension but 
near the walls and the floor it has a definite two- 
dimensional nature. Two other important results can 
be mentioned. 

(1) The double point concept was established when 
a water table is present below a building foundation. 
The location of the double point on a given surface 
marks a change in the heat flow direction. On one side 
of the double point, the surface loses heat but on the 
other side it gains heat. 

(2) Particular insulation values and configurations 
exist for which soil temperature is simply a linear 
function of depth, indicating that the soil is the~ally 
undisturbed even though a building is present. 
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APPLICATION DE LA TECHNIQUE ITPE A DES PROBLEMES PERMANENTS DE 
COUPLAGE AU SOL 

R&nn&Une nouvelle procedure appelee Estimation du Profil de Temperature Interzone (ITPE) est 
present&e et appliquie a la determination de la distribution bidimensionnelle permanente de temperature 
dans le sol autour d’un bltiment. Les solutions des equations de convection sont obtenues pour deux 
geometries courantes de couplage au sol : Ctages sur une semelle et fondations rectangulaires. Une nappe 
d’eau a temperature constante est supposie exister a une profondeur donnQ au dessous de la surface du 
sol. Les solutions present&es sont les premieres, pour ces geometries, qui soient capables de considerer les 
effets a la fois de l’isolation et de la presence dune nappe d’eau sur la conduction de chaleur avec des 

geometries. 

DIE ANWENDUNG DER ITPE-TECHNIK BE1 STATIONAREN ERDBODEN- 
MODELLEN 

Zusammenfassung-Eine neue analytische Vorgehensweise namens ITPE (Interzone Temperature Profile 
Estimation) wird vorgestellt und verwendet, urn die zwei-dimensionale stationare Temperaturverteilung 
innerhalb des Erdbodens urn ein Gcbaude zu bestimmen. Die Wlrmeleitungsgleichungen fii zwei gebrauch- 
lithe Erdbodengeometrien werden gelost : fiir einen oberfliichengleichen Gebiudeboden und fiir einen 
rechtcckigen Keller. In einer gegebenen Tiefe unterhalb der Erdbodenoberlhiche wird die Existenz einer 
wasserfiihrenden Schicht von konstanter Temperatur angenommen. Die gezeigten Lijsungen sind die ersten 
analytischen fiir diese Geometrien, die in der Lage sind, die Auswirkungen sowohl der Warmedlmmung, 
als such das Vorhandensein einer wasserfiihrenden Schicht auf den Wlrmestrom bei den genannten 

geometrischen Anordnungen zu beriicksichtigen. 

BCIIOJIb30BAHAE METOm OI-IPEJ@JIEHHR ME)ICiOHAJIbHOTO I-IPO@HJDI 
TEMIIEPATYP WII PEIIIEHH5I CTAHH;:;HA;IX 3A&A’I TEI-IJIQGEMEHA 3aAHHII C 

,b,W~~P~~~OXeH HOBbIii aHa,IHTH'ICSKHii MeTOAnOAHa3B~HeM"On~AeneHHe MeKC30HaJTbHOrO 

IIpOl$HJla TeMnepaT~(OM~T)",KOTOp~% HCllOJIb3yeTCKIlJlK HaXOWleHHKAByMepHOrOCTaUHOHapHOrO 

pacnpeneneHanTehmepaTypbIs~yTpsi3ebumHoro MaCmiBa BoKpyr3~H~n.IlonyYeHbrperueH~nypaBHe- 

HHii TeUJ‘OITpOBOJJHOCTH &V,I ,JByX UIHpOKO PaCnpOCTpaHeHHbIX reOM'ZT@: HaCTHJIOB H3 ILIIHT Ha 

ypoBHe 3ehm5i H npnMoyronbHblx ~OAB~~OB. lIpe.rmonaraeTcn 3a_neraHsie rpyHToBbrx BOA ~OCTORHHOH 

TeMnepaTypbl Ha OnpeAeiTeHHOii I'JIy6HHe HHSCe j’&JOBHK 3NJlH.&lK TaKAX reObWQJEi8 BnepBbIe IIPeAC- 

TaBJIeHbI aHiiJIHTHW32CHe FIlIeHHSI, yYHTbIBaEOlUJie BJlHSHHe KaK H30JIKUtiH, TaK H I-pj’HTOBbIX BOA Ha 
IlOTepH TeIIAa TaKHMH 06beKTaMH. 


